
NAVAL POSTGRADUATE SCHOOL
Monterey, California

'1 STATE 4

7e DTIC11 ELECTE
SGR A WO NOV 0 21988U

THESIS

TEMPORAL DATA, TEMPORAL DATA MODELS,
TEMPORAL DATA LANGUAGES and
TEMPORAL DATABASE SYSTEMS

by

Donald Dokeung Hom

June 1988

Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited

SJ

UNCLASSIFIED
SECURITY CLASS.; CA7O. OF "- S -ACE

REPORT DOCUMENTATION PAGE ,,, ,,,. .';, G . -
la REPORT SECUR,T CASS -C C \ 1b RESTRCT.\E MARKINGS

Unclassified
2a SECURITY C-ASS: - CAT.O\ A ,T'OR,Tv '3 DtSTRIBuT;ON AVAILABIL!Ty OF REPORT

I Approved for public release;
2b DECLASSIF CATION DOWGRAJ),NG SCHEDULE Distribution is unlimited

4. PERFORMING ORGAN.ZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

.6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School ifCode 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) I7 ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba NAME 0 FLJND!NC SPONSORING 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

71 TITLE (Include Security Classihcation)
TEMPORAL DATA, TEMPORAL DATA MODELS, TEMPORAL DATA LANGUAGES and TEMPORAL DATABASE SYSTEMS

12 PERSONAL AJTHOR(S)
Horm, Donald D.

13a. TYPE OF REPORT 3 ME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Master's Thesis 1ROM TO_ 1988 June 70

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Temporal Database; Data Models; Data; Data Languages

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

.,The study of temporal database systems is relatively new in the field of computer scienc
Two developments have led to the present interest. The advances of the storage technology
for large amounts of data and applications's requirement for time-dependent data have prompt
our study of temporal databases. This' thesis conducts a survey of the major research areas
concerning temporal databases. Temporal data, taxonomies of temporal data models, temporal
data languages, and temporal database systems are presented. It is argued here that future
database systems should handle the temporal domain by an integrated temporal database system

By understanding the present technology and the need of temporal database systems, our
research in the area of real-time temporal database systems can begin. It is the purpose of
this thesis to provide the background information and research references of temporal databae
systems as a first step towards the real-time database system research. Real-time database
systems are time-constrained and temporally constituted. Solutions in temporal database
systems can contribute to the design of real-time military applications using temporal database

dIV" Yi§ 1l(IN ,AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[UJNCLASSIFIEDUNLIMITED - SAME AS RPT El DTIC USERS Unrl .q.cifil

22 a NAME O RESPONSIBLE INDIVID'AL 22b TELEPHONE (Include Area Code) L2c OFFICE SYMBOL

Prof. nn-vid Kl- 1 inn (408) 646-2253 Code 52'7q

DD FORM 1473, 84 MAP 83 APR ed t on may 1e used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete 0 u.S. Govenm.n p ining ofic 19Si-6406-24.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

TEMPORAL DATA, TEMPORAL DATA MODELS,
TEMPORAL DATA LANGUAGES and
TEMPORAL DATABASE SYSTEMS

by

Donald D. Hom
Captain, United States Marine Corps

B.S., Rutgers University, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1988

Author: fbL"Q 4.*' PU £ 1
Donald D. Hon

Approved by: /t{L~ -9 J/6z 6ThZ
David K. Hsiao, Thesis Advisor

Robert B. McGhee, Acting ChairmanDepartment Science

A Dean ofrfomation and Polic, Sciences

ii

ABSTRACT

The study of temporal database systems is relatively new in the field of computer

science. Two developments have led to the present interest. The advances of the storage

technology for large amounts of data and applications' requirements for time-dependent

data have prompted our study of temporal databases. This thesis conducts a survey of the

major research areas concerning temporal databases. Temporal data, taxonomies of

temporal data models, temporal data languages, and temporal database systems are

presented. It is argued here that future database systems should handle the temporal

domain by an integrated temporal database system.

By understanding the present technology and the need of temporal database

systems, our research in the area of real-time temporal database systems can begin. It is

the purpose of this thesis to provide the background information and research references

of temporal database systems as a first step towards the real-time database system

research. Real-time database systems are time-constrained and temporally constituted.

Solutions in temporal database systems can contribute to the design of real-time military

applications using temporal database computers.

DTIC

INS ECTED N~ ~AA
DTIC TAF Li

Av C~C.

-: , r I I
%A

TABLE OF CONTENTS

I. IN TR O D U C TIO N .. 1
A. THE NOTION OF TIME .. 1
B. CONVENTIONAL DATABASES LACK TEMPORAL SUPPORT 1
C. PREVIOUS RESEARCH ... 2
D. STORAGE METHODOLOGY AND TECHNOLOGY 2

II. TEMPORAL DATA AND THEIR PHYSICAL ORGANIZATIONS 5
A. WHY TEMPORAL DATA? .. 5

1. The Trend A nalysis ... 5
2. The Retrospective Analysis ... 6

3. The Retroactive Change ... 6
4. The Postactive Change 7
5. Additional Applications of Temporal Data 7

B. DEFINITIONS AND REQUIREMENTS ... 9
1. Time Points Versus Time Intervals .. 10

a. The User-defined time ... 12
b. The Transaction tim e ... 13
c. The V alid Tim e ... 13

2. R ecord V ersioning ... 14

3. A ttribute V ersioning ... 15
a. Tim e Sequence ... 15
b. Properties of the Time Sequence ... 16

(1) T im e G ranularity ... 16

(2) L ife Span .. . 16
(3) R egularity ... 17

c. The Time-Sequence Collection .. 17
(1) The Simple Time-Sequence Collection 17
(2) The Complex Time-Seqi ce Collection 18

C. CONTRASTS AND DIFFERENCES .. 19
1. Time Points and Time Intervals .. 19
2. Record Versioning and Attribute Versioning 20

D. PHYSICAL ORGANIZATIONS ... 20
1. The Two-Level Storage Structure .. 21
2. The Two-Dimensional Array ... 27
3. Multidimensional File-Partioning ... 28

Ill. TEMPORAL DATA MODELS 30

iv

a,

A. WHY DO WE NEED MODELS? 3 0

B. A TAXONOMY OF TEMPORAL DATA MODELS 30

1. T he Static D atabase ... 31
2. The Static Rollback Database ... 32

3. The H istorical D atabase .. 33

4. The Temporal Database .. 35

IV. TEMPORAL DATA LANGUAGE .. 36

A. WHY DO WE NEED LANGUAGES? ... 36

B. A TAXONOMY OF TEMPORAL DATA LANGUAGES 36

1. Temporal Logic Language XYZ .. 37
2. Modal Temporal Logic .. 37

3. A n Interval Logic .. 38

4. Intensional L ogic ... 38

5. R elational A lgebra .. 39

6. Relational C alculus .. . 39
V. TEMPORAL DATABASE SYSTEMS .. 44

A. THE SYSTEM, MODEL AND LANGUAGE ... 44

B. A TAXONOMY OF TEMPORAL DATABASE SYSTEMS 44

1. Time-stamp Based Database System .. 44

2. Temporal Logic Based Database System .. 45

VI. CONCLUDING REMARKS .. 46

VII. ANNOTATED REFERENCES ... 48

LIST O F REFEREN CES ... 59

INITIAL DISTRIBUTION LIST ... 62

I.

A

I¥

xV

LIST OF FIGURES

Figure 1.1 Average Number of Papers Appearing Annually 3
Figure 2.1 Interval Relation Defined by Endpoints .. 11
Figure 2.2 The Thirteen Possible Relationships ... 12

Figure 2.3 A Relation in Record Versioning ... 14
Figure 2.4 A Relation in Attribute Versioning ... 15
Figure 2.5 A Representation of a Time Sequence Collection 18

Figure 2.6 Reverse Chaining 23
Figure 2.7 Accession List ... 24

Figure 2.8 Clustering ... 25
Figure 2.9 Stacked Versions .. 26
Figure 2.10 Cellular Chaining ... 27

Figure 3.1 A Static Relation ... 31
Figure 3.2 A Static Rollback Relation .. 32

Figure 3.3 An Historical Relation .. 34
Figure 3.4 A Temporal Relation ... 35
Figure 4.1 An Example of a Static Rollback Relation 41

Figure 4.2 An Example of a Historical Relation .. 42

Figure 4.3 An Example of an Temporal Relation ... 43

AL

vi

I[

I. INTRODUCTION

A. THE NOTION OF TIME

The concept of time has interested man from the very beginning of human

existence. Experts in the field of philosophy, mathematics, logic, physics, and others

have discussed the concept of time without a definitive definition. In Webster's New

World Dictionary, time is defined as the period during which something exists or

happens. But time is also valuable information concerning the life span of that

something in the real world. Time is universal. A classic representation of an object or

thing is a three dimensional description of its height, width and length. Little or 2o

attention is paid to the fourth dimension, that of time. An object from a person's view is

a continuity of changes over time. The value of a dollar today is not worth the value of a

dollar ten years ago, due to inflation. Time has devaluated the dollar, a fact that should

be represented in addition to its size and thickness.

B. CONVENTIONAL DATABASES LACK TEMPORAL SUPPORT

Present day use of database systems do not represent time aspects of data. They only

reflect the most current view, a snapshot of the real world at a specific moment in time.

There are several drawbacks to this scheme. First, the data in the database is only valid

for the most recent updates. Any new updates will not be reflected in the database until it

is actually entered. Secondly, previous information stored in the database is forever lost

in an update or deletion. Database systems have been developed to model the reality,

which should include historical data. The three well known data models, namely,

relational, hierarchical and network, do not address the issue of time. Ad hoc methods,

such as backups, checkpoints and transaction logs have been used for the retrieval of

p

historical data. Additionally, attributes involving time have been handle by the

application program, where dates, for example, are values of some specific type, usually

integers.

The argument for the database system to manage and control the temporal domain

versus the application program is made in this thesis. Further, it is argued that ad hoc

methods of collecting temporal data should be replaced by an integrated temporal

database system.

C. PREVIOUS RESEARCH

Temporal databases have been proposed to overcome the drawbacks of conventional

database systems. The problem of integrating temporal data with a database system has

been known for some time. Research and interest related to processing the tine-

embedded data is increasing exponentially, as illustrated in Figure 1.1. Any introduction

to the topic of temporal domain would not be complete without the two major survey

papers done on the subject. An extensive listing of about 70 pre-1982 time-related works

were compiled by Bolour and his colleagues in [Ref. 1] , primarily focusing in the areas

of artificial intelligence, logic and linguistics. Edward McKenzie followed Bolour from

1982-1986, with over 80 bibliographies in the area of the time-related research in

databases [Ref. 21. The bibliographies were classified according to the taxonomy

developed by Snodgrass and Ahn [Ref. 31 which distinguished their capability to

represent temporal information in a database system. The taxonomy is to be discussed in

a later section.

D. STORAGE METHODOLOGY AND TECHNOLOGY

A characteristic of temporal data is the non-deletion policy [Ref. 4] , since data

provide a progressive history of transactions of the database. Non-deletion simply means

once a record is inserted, it cannot be deleted except to correct an error in the case of the

* 2

'r Pr

60

33

20

6
3

2076 8 I I

'71 -75 1'7-8 8 1 -'84 1'85 '.861

(Reprinted from [Ref. 2])

Figure 1.1 Average Number of Papers Appearing Annually.

historical database, which is defined in chapter HI. One of the major obstacle of

implementing temporal databases is the physical storage limitations. Enormous amounts

of historical data require an efficient storage medium with the capacity to handle large

volumes of data. Previously, any access to temporal data was limited to an offline-mode

use of magnetic tapes or microfiches, for the purpose of archival storage. On the other

hand, a practical implementation of temporal databases would require sufficient disk

capacity and an oline capability, providing direct access to the data. The technology of

the past did not provide this capability and therefore, the study of temporal databases was

not enthusiastically pursued. As storage costs continue to decrease and new

3

] I I, 0

technological developments with mass storage become more apparent, the interest in

temporal databases is emerging. An example of the technology found in [Ref. 5]

and [Ref. 61 is optical disk with write-once capability, the 150-microsecond access time

and the 5-gigabyte capacity. Another recent development is multiple optical disks with

storage capacity ranging from 1250 gigabytes to 2000 gigabytes, at a maximum access

time of 5 seconds [Ref. 7] and [Ref. 8]. Additional references on optical disks can be

found in [Ref. 91 and [Ref. 101. The advent of optical disk creates other problems.

Write-once technologies prohibit rewriting and reorganizing of data that is commonly

done in conventional database systems. New access methods and storage structure must

be developed to manage the write-once storage and achieve reasonable performance.

However, magneto-optical disks which combine the write-many-times magnetic-disk

characteristics and the high-density-storage optical-disk characteristics are

emerging [Ref. 101. The technology for temporal data is promising.

4

-N

4

)4

)1

H. TEMPORAL DATA AND THEIR PHYSICAL ORGANIZATIONS

A. WHY TEMPORAL DATA?

The term temporal according to Johnson [Ref. 1 I] is applied to the data item which

is "stamped" with the time during which it is valid or in effect. The primary purpose for

temporal data is to provide information on past states. In other words, historical

information of all the transactions of the database determined by some time element.

This is a major change in concept for databases. In the past, one and only one value was

associated with an attribute. With temporal databases more than one value can be

assigned to an attribute. For example, the marital status can be both married and single

at different times or views of the database. If a data language as an interface is provided,

then historical queries can be formulated against the database. In many instances,

applications need both current and past data. The impetus for the temporal database is

perpetuated by application's requirement for historical data. Some of the outstanding

applications are introduced in the sections followed.

1. The Trend Analysis

There are several distinct advantages of incorporating temporal data into a

database management system. With temporal data, it is possible to have several different

versions of data as it evolves through time, known as version management. A useful

application derived from version management is trend analysis [Ref. 4]. Trend analysis

relies on historical data to predict future events. Trend analysis has also been referred to

as time-series analysis. Businesses could certainly benefit from this application of

temporal data.

In the military establishment, the use of computer systems are pervasive. The

military relies on advance technology, which inevitably uses information processing

5

capabilities, to counter the advantages of the conventional forces in the Soviet-bloc

countries. Computer systems are used in aircrafts, tanks and guided missiles just to

mention a few. As part of a bureaucracy, the Department of Defense (DOD) generates its

fair share of administrative tasks. Computers are used to manage personnel matters,

maintain supply inventories and interface with communication and control systems.

Trend analysis can certainly be applicable to a wide variety of military applications. By

providing managers and planners with the information available from trend analysis,

better decision making capabilities should reduce the level of time and effort devoted to

administrative duties.

2. The Retrospective Analysis

At the opposite end of the spectrum is retrospective analysis which provides

the application the capability to ask what-if types of questions. For example, what if the

price of a product was raised by one dollar instead of fifty cents in 1985. The database

management system can substitute the information into the previously specified version

and bring forward the computed result to the present time. This is particularly important

in business planning and scientific research.

The military is a major supporter of many such research and development

programs. Retrospective analysis can be used to reduce the overall cost of these program.

For example, in the testing phase, tests are conducted repetitively for a range of values of

a specific variable with all other variables constant, which can become very expensive.

With retrospective analysis, the system performs the test more efficiently and at a lower

cost. The savings in cost can then be used in other areas of a pressing need.

3. The Retroactive Change

One of the major shortcomings of conventional databases is their lack of

retroactive changes in the database system. If an update becomes effective the moment

the fact is entered into the system, no problems occur. However, if the update refers to

6

o r 11111 11 11 11 1 1 1

BM W V C I'

something in the past, a loss of information will result. The fact that the change was

retroactive cannot be represented. A query in this environment can result in two answers,

both of which are correct, because of the overlap caused by the retroactive change. A

typical example is a raise that is retroactive to a specific date. An employee's salary on

1/1/88 is $1,000. On 3/1/88 the employee's salary is changed to $2,000, but retroactive

to the first of the year. There is no way to capture the information regarding retroactive

change in conventional database systems. A query to determine the employee's salary on

2/1/88 could result in the value of $1,000 or $2,000, depending on the circumstances

surrounding the query. If the answer is $1,000, the salary was not changed as of the

query. If the answer is $2,000 the salary has been retroactively changed. Any queries of

the salary after 3/1/88 will result in the answer of $2,000. This problem causes

inconsistency in the database. The use of temporal data can represent the salary change

retroactively without the loss of information.

4. The Postactive Change

Frequently, changes to data are known in advance of the event, known as

postacrive change. In conventional database systems, this fact cannot be represented

efficiently. For example, an employee's salary is $1,000 as of 1/1/88. A raise of $1,000

has been approved by the management to be effective on 3/1/88. This information

cannot be entered into the database until 3/1/88. Otherwise, a query of an employee's

salary before 3/1/88 will result in the value $2,000, an incorrect response, since the true

value is $1,000. The ability to enter information into the database concerning a future

event is facilitated through the use of temporal data. Otherwise, ad hoc methods which

require manual intervention is needed.

5. Additional Applications of Temporal Data

Besides the ongoing technological developments with storage devices, serving

as a motivating factor for the temporal data storage, many applications need to maintain a

7

III N I Wil P

complete record of operations over the life of the database. These applications require

current, past and future data, providing a complete history and future of transactions of

the database. Interest in the temporal data storage is prompted by new applications that

inherently deal with time and provide a historical perspective and future perspective of

data.

One of the first implementation and use of temporal data was Time-Oriented

Database (TOD) [Ref. 121 designed to meet temporal-specific requirements with regard

to medical applications. Its data types are of a medical nature and the notion of time is

associated with individual patient's recurring visits. It is implemented as a library of

shared programs, handling a form as a three dimensional table, with the patient, patient

visits and visit times as its dimensions.

The database is implemented as a set of files maintained by some local file-

service system, and provides the following three categories of data:

1. The Schema files: They include source statements of the Time-Oriented
Database-Data Definition Language (TOD-DDL) in one file and an inverted list of it
for efficient interpretation of source statements, i.e., queries.

2. The Data files: They include a patient header (non-chronological patient informa-
tion) and visit parameters (visit digital information). The latter are indexed on visit
numbers. All the records of the file are arranged as doubly linked lists of visit
records, where pointers are the visit numbers, which allows cross-referencing via the
files' own index.

3. Accessing files: They are created upon request, usually in a batch mode, and in-
clude various secondary indices or statistical summaries to facilitate faster access
and processing speeds.

The growing use of Decision Support Systems (DSSs) requires such systems to

explicitly handle time and historical information [Ref. 12]. Businesses rely on such

systems to provide analysis of historical data and to predict future events, i., trends

8

analysis. Retrospective analysis is also important for corporations. All of the functions

previously mentioned is predicated on the use of historical data that deal with the time

element.

Another area of interest where applications can benefit from the use of

temporal data is Scientific and Statistical Databases (SSDBs) [Ref. 12]. Physical

experiments, measurements, simulations and collected statistics are usually in the time

domain, an analysis of which requires temporal support. These applications are

inherently dependent on time and serves as an incentive to develop temporal support for

them.

A proposal to use temporal data in real-time computer systems for military

applications has been made. One example is the firing control computer software for

guided missile [Ref. 131. Real-time databases are time-constrained and temporally

constituted. The necessity for the system to be responsive in real-time is critical.

Previous applications do not have the requirement to support real-time applications. The

implications of the new requirement need further research. Areas it may affect include

access methods, physical organization and the design of the real-time DBMS.

Other applications have been identified which could benefit from the temporal

support. They include engineering database, econometrics, survey, policy analysis,

office automation and capacity planning to name a few. An exhaustive listing of all the

applications that can benefit from the development of a temporal system is only limited

by time, space and man's imagination. It is sufficient to say, the need for temporal

database systems is driven by a very wide variety of application requirements.

B. DEFINITIONS AND REQUIREMENTS

As more papers are published on the subject of temporal support for databases, a

proliferation of terms used to describe the temporal domain have appeared leading to

9

,d7

confusion. In this section, the definitions of temporal data are given. These definition

include the temporal requirements and examples are provided to clarify concepts. James

Allen's contribution is the introduction of an interval-based temporal logic consisting of

time points and time intervals [Ref. 14]. The works of Snodgrass and Ahn, developing

three different classifications of time, attempted to rectify the situation by establishing a

standard from which to analyze the temporal domain. This paper points out that the three

different times merely fall under the temporal logic of time points and time intervals.

1. Time Points Versus Time Intervals

In referring to temporal data by a query language, the notion of time points and

time intervals becomes an important consideration. The query language must be capable

of handling new semantic issues dealing with time-embedded data. Most spoken

languages use the tense to describe the relationships of times and events. For example,

event A happened before event B with respect to some reference point. A closer

examination of an event reveals a problem with this approach. Some events appear to be

an instantaneous time point, but in reality is made up of very small intervals. An event,

such as turning on a flashlight can be composed of finding the switch, placing your hand

on the switch and turning the switch to activate the flashlight. Time points can always be

magnified, but prove useful if they are viewed as individual time intervals. The informal

notion of time points composed of very small intervals becomes useful in the temporal

application.

A description of facts in the world consists of an interval of time in which it is

valid. The flashlight example showed time points are made up of very small intervals.

To represent the period when the flashlight was on, the time interval before and after

when the flashlight was off can be used. Intuitively, the conclusion we have reached

above is obvious. The problem deals with the representation of the endpoints in an

interval. The interval can be either opened or closed. If it is opened, there exists a time

10

point within the interval where the flashlight is neither on nor off. This creates a rather

serious logic problem in the temporal domain. However, if the interval is closed, then

this can be interpreted to mean the flashlight is both on and off for a time point within the

time interval, a more serious problem than the first. One apparent solution to this

problem is to adopt a convention that a interval is closed at its lower end and open at its

upper end. Therefore, each interval would have only one endpoint avoiding the problem

of two endpoints in an interval. This solution only reinforces the unique notion of time

which cannot correspond to the model of time based on points on the line of real

numbers. James Allen's definition of a time interval, if intervals could be modeled by

their endpoints, is as follows: Assuming a model consisting of a fully ordered set of

points of time, an interval is an ordered pair of points with the first point less than the

second. Relationship between intervals can then be defined according to Figure 2.1.

assuming for any interval t, the lesser endpoint is denoted by t- and the greater by t+. A

Interval Relation Equivalent Relations on Endpoints

t<s t+<s-

t = s (t- = s-) & (t+ = s+)

t overlaps s (t- < s-) & (t+ > s-) & (t+ < s+)

t meets s t+ = s-

t during s ((t- > s-) & (t+ =< s+)) or ((t- >= s-) & (t+, s+))

(Reprinted from [Ref. 14])
Figure 2.1 Interval Relation Defined by Endpoints.

11

further subdivision of the interval is possible. The inclusion of the inverses of the interval

relations are introduced. There are thirteen possible relationships as depicted in Figure

2.2. A complete discussion of temporal interval relation is found in [Ref. 141.

a. The User-defined time

An example of a time point is the user-defined time, the first of the three

kinds of time introduced by Snodgrass and Ahn. User-defined times, also known as

application times become part of the record schema and are in the form of mnm/dd/yy,

i.e., for dates. The date can also be referred to as a time-stamp. The values of the user-

Relation Symbol Symbol for Inverse Pictorial Example

X before Y < > XXX YYY

X equal Y = XXX
YYY

X meets Y m mi XXXYYY

X overlaps Y o oi XXX
YYY

X during Y d di XXX
YYYYYY

X starts Y s si XXX
YYYYY

X finishes Y f fi XXX
YYYYY

(Reprinted from [Ref. 14])
Figure 2.2 The Thirteen Possible Relationships.

12

defined temporal domain are not interpreted by the DBMS and are thus the easiest to

support. They can be treated like a regular attribute in a record. The requirements for

the user-defined time is the internal representation, usually in integers and the

input/output functions. DBMS th support the concept of the user-defined time have

been implemented in such systems as Query-by-Example, Enform DBMS, Microlngres

and others.

b. The Transaction time

Transaction times are the second of the three kinds of time defined by

Snodgrass and Ahn. A transaction time comes under the auspices of time interval and is

defined as the time at which the data item concerning the event was stored in the

database. In other works, the transaction time has also been called physical time,

registration time, data-valid-time-from/to and start/end time. It is of the form mm/dd/yy

- mm/dd/yy and thus consists of two time-stamps. The first time-stamp entry is created

with the current time and a null value in the second time-stamp entry when the tuple is

first inserted into the database. The second time-stamp entry is updated with the current

time when the tuple is deleted from the database.

c. The Valid Time

Very similar to the transaction time, the valid time is the last of the three

kinds of time. It also comes under the classification of a time interval. However, a valid

time is defined as the time an event occurs in the real world. Other authors have referred

to the valid time as the logical time, event time, effective time, state, and start/end time.

The valid time is also of the form mn/dd/yy - mm/dd/yy. A special case of the valid

time is event relation, which only requires one time-stamp. An event relation is binary

where the event is either on or off.

13

• 'a '

2. Record Versioning

Two schemes to represent temporal version were identified by Alan [Ref. 4].

The first is record versioning. In a relational table each row (corresponding to a record in

conventional file) has the addition of an time interval [timejfrom time-to], indicating the

period the row is valid, see Figure 2.3. When a row is first place in the table, the timeto

component of the time interval is set to "-O" meaning the row is currently valid. The

deletion of an existing row in the table changes the timeto component form "-o" to some

time, usually the current time, although it can be explicitly stated. The replacement of an

existing row consist of a delete operation as described above and a new version of the

row augmented with the appropriate interval. The valid time and transaction time are

examples of record versioning. They both require a time interval to represent a period in

which something is true. The obvious drawback to this scheme is the amount of

redundancy created in the secondary storage. An update to a single attribute in a row

requires the whole row be recreated. Even though the new storage technology is

emerging, this scheme consumes valuable storage spaces.

Name Title Salary (time from, time to)
John Programmer 25 (Jun 81, Sep 82)
John Programmer 30 (Sep 82, Mar 83)
John Manager 30 (Mar 83, Dec 84)
John Manager 35 (Dec 84, -c)
Tom Programmer 27 (Sep 83, Jun 84)

(Reprinted from [Ref. 4])
Figure 2.3 A Relation in Record Versioning.

14

3. Attribute Versioning

Attribute versioning is an alternative scheme to represent temporal version. In

attribute versioning, an attribute is considered dynamic or static. A dynamic attribute

changes over time, while a static attribute is constant and does not require any temporal

support. In the case of the dynamic attribute of a record, it is represented by a set of

<valueinterval> pairs, where interval is similar to record versioning except that the

interval is associated with each version of an attribute value, see Figure 2.4. The

operations for the interval in attribute versioning are similar to record versioning.

a. Time Sequence

Arie Segev and Arie Shoshani's modeling of temporal data is an example

of attribute versioning [Ref. 15]. The concept of a time sequence is the sequence of

values in the time domain for a single entity instance, such as the salary history of a

person. A temporal data value is defined for some object (e.g., a person), at a certain

time point (e.g., March, 1988), and for some attribute of that object (e.g., salary), thus

forming a triplet (s,t,a) where s is the surrogate for the object, t is the time and a is the

attribute value. For a given surrogate the temporal data value are ordered in th-ne. In

other words, they form an ordered sequence called time sequence represented by

Name Title Salary
John Programmer (Jun 81, Mar 83) 25 (Jun 81, Sep 82)

Manager (Mar 83, **) 30 (Sep 82, Dec 84)
35 (Dec 84, -)

Tom Programmer (Sep 83, Jun 84) 27 (Sep 83, Jun 84)

(Reprinted from [Ref. 4])
Figure 2.4 A Relation in Attribute Versioning.

15

<s,(t,a)*>, where (t,a)* is a sequence of zero or more time-value pairs for a given

surrogate.

b. Properties of the Time Sequence

There are four properties related to time sequence; they are the time

granularity, life span, regularity and type. These properties allow a uniform treatment of

time sequences. First, operators can be defined for time sequences of different types.

Secondly, the physical structure can be designed in the same manner for different types

of time sequences. Finally, the properties permit a more efficient design for storage and

access.

(1) Time Granularity. The time granularity determines the size of an

interval between time points. According to [Ref. 161 two representation are permitted:

ordinal and calendar. Ordinal representation states the time points are counted by integer

ordinal position (1,2,3,...). Calendar representation takes on the values: year, month,

day,...,seconds,etc.

(2) Life Span. The life span defines the period in which the time

sequence is valid. The use of a starttimes and endtimes is represented by ordinal or

calendar. The time granularity and life span need not have the same representation.

There are three cases of the life span of interest.

I. Start-point and end-point fixed.

2. Start-point is fixed and end-point is current time.

3. A fixed distance is defined between the start-point and the end-point. The end
.point is "current time" and the startpoint is dynamically changed to maintain the
fixed distance from the end.point.

The life span can be disjoint, non-continuous segments represented by the use of "null"

value for the time-point value. This indicates a value does not exist for this time point.

16

(3) Regularity. The regularity is used to distinguish regular and

irregular time sequences. Two factors make the distinction of regular from irregular time

sequences necessary. The regularity is a semantic property needed by the system to

interpret time sequences and is important in the physical organization of time sequences.

Regular time sequences contain a value for each time sequence in the interval, and have a

value at each time point, usually measured by some sort of device. Irregular time

sequences are unpredictable events that occur with no regularity and therefore contain

values for only a subset of time points in the interval. A typical example of a regular

time sequence is scientific experiments where measurements are taken at regular

intervals. Sales is an example of irregular time sequence, since there is no way to predict

when this may occur.

c. The Time-Sequence Collection

A useful way of thinking about the time-sequence is collecting the objects

that belong to the same class. A class is any collection of objects that have the same

attributes, such as a person. Each object within the class has a unique identifier called the

surrogate. A composite class requires more than one surrogate for the identifier. For

example, the 'attendance' class has surrogates student and course. Time-sequence

collections provide the capabilities to address an entire class of temporal attributes and

relate them to other possible non-temporal attributes of the classes.

(1) The Simple Time-Sequence Collection.

The component of a simple time-sequence collection, namely S, T

and A, all represent a single element. A simple time-sequence collection is the collection

of all the temporal values for a single attribute for all of the surrogate of a simple class.

A simple class is a class with a single surrogate as its identifier. It is represented

graphically in a two-dimensional space as shown in Figure 2.5. Each row represent a

17

S- . t j

II

,~TS 1 . . * .

TS2 •

Si ----- V
s v -

TS n . ..

(Reprinted from [ref. 15])
Figure 2.5 A Representation of a Time Sequence Collection.

surrogate of a time sequence. The data indicates the presence of a temporal value for

some surrogate si and some time ti.

(2) The Complex Time-Sequence Collection.

The components in a complex time-sequence collection is not

restricted to a single element. The case where S is not a single element is denoted by

(S,T,A). S in this situation is a composite class. The same two-dimensional pictorial

representation applies except that the rows are labeled with the composite surrogate

identifier of the class. The case where T is included has more than one time sequence

associated with temporal values. Candidates for the time attribute are the valid time and

transaction time which were discussed in length in an earlier section. This situation is

also represented as (S,T,A). The third case involves the attribute A occurring more than

18

once as in (S,TA). An example would be a collection of several pieces of information

taken at regular intervals. Any combination of the three cases can occur simultaneously.

C. CONTRASTS AND DIFFERENCES

In this section, time points versus time intervals and record versioning versus

attribute versioning are analyzed. They become a fundamental aspect of any temporal

data model. Some of the affects will impact the storage structure, access method and

query language of the database system. The design of the DBMS will be predicated on

the selection of these properties and schemes.

I. Time Points and Time Intervals

Physically the difference between time points and time intervals are obvious.

Time points use a single time-stamp to represent an event and time intervals use two

time-stamps to represent a period of time. Time points are relatively easy to support

through the application software. Treated like normal integers, time points are

manipulated by user-defined functions. On the other hand, time intervals are

semantically more complex, requiring new access methods and query languages.

Within time intervals the distinction between the valid time and the transaction

time is important. The transaction time is a representation of the time when the data

concerning an event is stored in the database. The valid time models reality, the time the

data actually happened in the real world. This is manifested in the data model structure.

The use of transaction times limits the flexibility of the database. Once a time is added to

the database, it can never be modified. This in turns means that any addition to the

database is restricted to appending only. This is not the case with the valid time. 0

Discrepancies between information in the database and the actual event are subject to

misinterpretation. These errors can be modified if we utilize valid times.

19t,

IEO

2. Record Versioning and Attribute Versioning

Record versioning augments the entire row with two tune-stamps. The

disadvantage to this method is the duplication of data during a single attribute update.

Imagine if you have a 2,000 byte record with 1 byte representing marital status. If a

person becomes married the entire record is now invalid. A new record must be created

with a single byte change to reflect the new marital status. The other remaining bytes

were unchanged. For this reason attribute versioning is designed to avoid the waste of

storage space. Only those attributes that have changed over time are augmented with

time intervals. The contents of attribute versioning and record versioning both contain

the same amount of information. It is possible to derive one from the other. The

conversion from record versioning to attribute versioning is done according to the

operations (insert, delete, replace) described in attribute versioning. The conversion from

attribute versioning to record versioning requires two operations, UNNEST and

SYNCH [Ref. 4]. The UNNEST operation developed by Jaeschke and Schek transforms

a non-first-normal form relation to a first normal form. After completion of the

UNNEST, the SYNCH operation determines the largest interval for which attribute

versioning is in effect. Null intervals are deleted and the transformation is complete.

D. PHYSICAL ORGANIZATIONS

This decade has been called the information age due to the advances in computer

technology, specifically, storage devices, which has made the concept of time-embedded

databases feasible. The key element for implementing temporal data is an effective

storage structure. This structure must address the very nature of temporal data, its large

volume of data. Temporal data are historical, which may be kept around for years. As

years past the amount of infornation accumulated is significant, yet the database system

must handle storing and accessing the data efficiently. An effective structure must

20

address several characteristics of temporal data. The first is the non-deletion property,

already mentioned in chapter 1. Since a record will never be deleted in the case of a

historical database except for error correction, designing an effective storage structure

and accessing methodology is essential. Secondly, the design for temporal data should

consider the application's intended use. Most queries will access current data, while

temporal queries are sporadic. Access methods must be developed to prevent penalizing

non-temporal queries yet provide reasonable access time for historical queries. Temporal

data generate several versions of data. If conventional access methods are used, such as

hashing and indexing, performance degradation occurs. This is caused by overflow

chains and collisions. The need to develop storage techniques and access methods

specifically designed for temporal support is therefore identified. Without new

developments in this area, the implementation of temporal data will indeed be difficult.

As always, there are several different physical organizations of temporal data.

Certain properties unique to temporal data should be considered. Three widely held

views of organizing temporal data are discussed. The first view is a two level storage

structure as identified in [Ref. 4]. The second approach views temporal data as time

sequences, for which a two-dimensional array is the suggested organization [Ref. 16].

The third approach is that of a multidimensional partioning of the file [Ref. 171. Each is

discussed below.

1. The Two-Level Storage Structure

The two-level storage structure is designed to take advantage of certain

characteristics unique to temporal data. The existence of a large number of temporal

versions render conventional access methods inefficient. Other access methods, such as

B-trees, grid files, extendible and dynamic hashing have been suggested. But these

methods require complex algorithms and create excessive overheads. The two-level

storage structure is design to differentiate the characteristics between current data and

21

111

history data. Current data is relatively static, after reaching a certain point. History data

require large amounts of storage and do not require updates except in the case of adding

historical data. Additionally, the pattern of accessing data influences the decision for a

two-level storage structure. Current data is more frequently accessed than history data.

That seems obvious since users are more interested in the latest information. Therefore,

a difference between the two types of data is the storage and accessing requirements.

The two-level storage structure separates the current data from the history data.

The current data is stored in an area known as the primary store. The history data is

located in an area called the history store. This provides the capability to have two

separate access methods, each design to take advantage of the unique characteristics of

the data and store media. The access method used in primary store can support non-

temporal queries and more-frequently-required history data. By using different access

methods in the two-level storage structure concept, non-temporal queries will not be

penalized with long access times.

A variation of the two-level storage structure was first identified by [Ref 18].

which has proposed a chaining of versions of a tuple in the reverse time order. The

beginning of the chain contains the current version of the tuple and the oldest version is

last in the chain. If the tuple is deleted, then the chain will be moved to become the

history chain. To implement this methodology in a two-level storage structure is simple,

Figure 2.6. When a tuple is first inserted, it is placed in the primary store. When the

current version of the data is updated to reflect changes, the old version is moved to

history store with appropriate updates to the pointers. To access information, the current

version is located and, by following the pointer, older versions of the data can be

accessed.

22

(Reprinted from [Ref. 4])
Figure 2.6 Reverse Chaining.

If the lengths of chains in history store are excessively long, then performance

degradation occurs. An accession list is inserted between the primary store and history

store. The accession list is nothing more than an index into the history store, see Figure

2.7. The accession list is accessed by a pointer in the current version. The accession list

contains information about each version, eliminating the need to physically access each

history version. Therefore, only the required history version as determined by the

information in the accession list will be accessed. Since an accession list will be

frequently accessed as compared to history version, it is kept on the magnetic disk.

History versions do not need pointers or temporal information, since it is kept in the

accession list.

Another variation is to cluster all history versions of each tuple into the

minimum number of pages, see Figure 2.8. This method reduces the disk accesses to

23

$1

(Reprinted from [Ref. 4])
Figure 2.7 Accession List.

24

191C7 or^~ MJ AA.' amW~ XJMK~ KI U2WWXJW W WP R* X N V W - r - WWWVWIUWVWWNIJ UU WUWV W

-Cop

(Reprinted fronp [Ref. 4])
Figure 2.8 Clustering

history versions but requires a complex algorithm to maintain the clustering and high

storage utilization. A simple but inefficient manner to store history data is to assign a

page for each tuple. To better utilize storage, several tuples may share the same page. If

an overflow occur the page is split into two pages, each containing all the unique tuples

selected for the particular page. A link between the primary store and the history store is

needed to connect current version with its history version. A physical pointer is used as a

link which also requires the maintenance if overflow occurs. Another problem with a

physical link is concurrency problems. The primary store is locked during an update.

The problem can be resolved with the variations of dynamic storage structure.

2

25(

S

A stack consists of tuples with an equal number of history versions in the

history store, see Figure 2.9. This application is useful when a fixed number of history

versions is needed. As new history versions are added and exceed a predetermined

number, the older versions are discarded. This behavior is similar to a stack with finite

amount of storage where older versions are pushed through the bottom. Optical disks

cannot be used for this method since it requires rewriting some of the data. The

drawbacks are the limited number of versions and possibly lower storage utilization.

(Reprinted from [Ref. 41)
Figure 2.9 Stacked Versions

26

Cellular chaining combines some of the advantages of the previous methods.

Cellular chaining is essentially reverse chaining with multiple versions in a cell, see

Figure 2.10. If an overflow occurs another cell is added to the chain. Clustering occurs

within a cell. The cell can be thought of as a stacked version since several versions of

the same tuple exists in the cell.

2. The Two-Dimensional Array

Time sequences are implemented in a two-dimensional array structure and also

seek to take advantage of temporal characteristics, see Figure 2.5. Changes to historical

(Reprinted from [Ref. 4])
Figure 2.10 Cellular Chaining

27

N.N

data are limited. As in the two-level storage structure, better utilization of storage and

efficient access of data are goals of the two-dimensional array structure for time

sequences.

The two indices into the two-dimensional array are on the surrogate and time

values. This is efficient because these values are only stored once for each data value.

This implementation is a direct result of the goals. Time sequences can be viewed as a

time sequence array. This method works well for the regular time sequence array, but

creates problems when the time sequence array is sparse. The discussion of the sparse

array can be found in any data structure book. There are five assumptions that guide the

selection of indexing the surrogate and time domain.

The first assumption is that the order of values in time sequences is important.

Frequently, information requested ranges over a time period. If these values are

preserved in the physical structure, located in one area, a more efficient access would

result. This serves to minimize the input/output (I/O) overhead associated with the disk

reads. The second assumption is on random access with respect to the time domain.

This enables direct accesses to certain portions of the time sequence. Otherwise, every

access would proceed sequentially. The third assumption is on random access to the

surrogate. This serves the same purpose as indexing by the time domain. The fourth

assumption is on the ordering in the surrogate domain. This forms a partioning of closely

related information, which can be easily accessed through indexes. Finally, it is assumed

that the secondary index is not required for data values in most applications. Usually, an

access to data is determined by the time and surrogate domain.

3. Multidimensional File-Partioning

Multidimensional file-partioning (MDFP) is another approach to organize

temporal data. MDFP consists of three levels. The first level consists of a file with

28

information about the partioning points. Partioning points are the possible ranges of

values for each attribute. These ranges are then segmented into partitions with the

defining cell. Each tuple belongs to a cell as derived from the segmentation. Algorithms

to determine partioning points are discussed in detail in [Ref. 171. This first level

information is kept in fast storage. The second level is a directory for each entry of a cell

of the partioning. This entry is a pointer to the page that contains information about the

tuples of the cell. The last level contains the actual data. The last two levels are kept on

the disk storage because of their sizes. This method is particularly useful for calculating

statistics for value ranges along the time dimension.

w

29

&A5
'."R

Hi. TEMPORAL DATA MODELS

A. WHY DO WE NEED MODELS?

A data model is used to describe the logical structure of a database in a database

system. One definition [Ref. 191 for a data model is a collection of conceptual tools for

describing data, data relationships, data semantics and consistency constraints of a

database. Another definition [Ref. 20] of a data model is it represents a small subset of

the reality, appropriate to one application of the database concept. In other words a data

model is nothing more than an abstraction of the database. For a user a data model

facilitates the user's interaction with the DBMS, so the user need not be concerned with

the details of the DBMS. This enables the user to concentrate in what the user wants to

accomplish with his application instead of how to accomplish it with the DBMS.

B. A TAXONOMY OF TEMPORAL DATA MODELS

Presently, most of the research and work concentrates on extending the relational

model to include time-embedded information. Therefore, the focus of this section deals

with the relational model. However, of interest is the research being conducted at the

International Business Machine (IBM) Scientific Center located in Heidelberg, West

Germany, which incorporates the time element in a hierarchical data model. Two

approaches to extending the relational model have been identified [Ref. 21]. The first is

to incorporate the semantics of time in the database model. The semantics used is based

on the formulation of intensional logic, which provides consistency and uniform

treatment of time. The logic serves as a formalism for time-embedded database much

like the first-order logic serves as a formalism for the relational model. A detailed

discussion is found in [Ref. 22]. The second approach is the addition of time associated

30

L N

attributes, for which a taxonomy will be defined.

1. The Static Database

Snodgrass and Ahn developed a taxonomy which introduced four kinds of

databases distinguished by their capability to represent temporal information. The first

kind of databases to be considered is called the static database or conventional database,

which consists of a snapshot of the real world at a particular point in time, although it

may not be current. Usually there is a period of time that exists between a change in the

real world and the physical update to the database to reflect the change. This causes the

database to be inconsistent with the real world until the update occurs. Updates to the

database permanently destroys any previous information stored. An example of these

conventional databases is the relational database, which can be graphically represented

by a two-dimensional table, see Figure 3.1. A major disadvantage of static database is its

inability to answer historical queries such as: What was John's salary five years ago?

Other methods had to be developed so this type of queries can be answered, since a user

(Reprinted from [Ref. 3])
Figure 3.1 A Static Relation.

31

may want to ask questions of this type. Static databases also lack the facility to handle

trend analysis, retroactive change, and postactive change, which have been addressed in

Chapter II.

2. The Static Rollback Database

To solve the problem of losing information in the static database environment,

all past states are indexed on time forming a three-dimensional table as in Figure 3.2. In

other words, it is a table of a sequence of states. This index called the transaction time is

the third axis in the three-dimensional table. To retrieve information in any past state,

the term rollback is applied. Rollback is an operation that simply takes a vertical slice of

the three-dimensional table. The term also gives this kind of a database the name, the

static rollback database. A horizontal slice of the cube provides a historical perspective

transaction
time

(Reprinted from [Ref. 3])
Figure 3.2 A Static Rollback Relation.

32

pf

of the tuple. Any transaction, whether addition or deletion will be appended to the front

of the cube. Therefore, the front of the cube contains the most current version of the

database. The problems with this approach are many. The static rollback database

represents the history of a database transaction, i.e., the time the entry is put into the

database, not the real-world time of the event happening. Additionally, updates to past or

future states are not possible. Implementing this sort of database poses several problems.

If a tuple does not change between states, the data is duplicated and brought forward to

the front of the cube. This creates an excessive waste of the storage space. To overcome

this situation a start/end time of the transaction time is associated with each tuple and

maintained by the database. In Lum's paper [Ref. 18] , several other drawbacks of this

method have been identified. As the number of versions increases, the performance

decreases. This degradation is caused by large relational tables as indexing of all tuples

are required. Another problem with this strategy is schema anomalies. Temporal schema

anomalies are caused by restructuring the database. By adding new attributes to a

relation it may be impossible to enter old data into the new schema. As a database

evolves in this environment, a conflict appears. Old relations that do not have time-

stamps coexist with new relations that have time-stamps. A similar problem occurs by

transforming a non time-varying relation into a time-varying relation by adding the

time-stamp. The system must be able to retrieve non time-varying relations, which are

valid relations, but contain no time-stamp. A more detailed discussion is found

in [Ref. 23]. The advantages of this approach is the ease and quickness of implementing

the time-added attribute to the existing database system without major modifications to

the system.

3. The Historical Database

The historical database differs from the static rollback database by replacing

the transaction time with the valid time as the third axis in the three-dimensional table as

33

At

in Figure 3.3. A historical database records one historical state per relation. This can be

viewed as taking a horizontal slice of the cube. Unlike a static rollback database, errors

can be corrected in an historical database, but there is no record of the corrections made

and previous states are forgotten. A second difference of the two is that the historical

database can record knowledge about the past while static rollback database can only

rollback to past states. With the inclusion of the valid time in the database management

system, the query language becomes more complex in order to handle the semantics of

valid times. Like static rollback databases, the endpoints of the valid times are appended

to each ruple for storage efficiency. Another feature that the historical database support

is the user-defined time.

SI

valid
time

(Reprinted from [Ref. 3])
Figure 3.3 An Historical Relation.

34

0~d

wmnn in~u n..1-i.n.-n.,~.. ,,s PU W Wn PMAx:lUI9 xyi MJMwin x~wuw uKXP\Sm ird Wn'd wV AV PW R lrr

4. The Temporal Database

Temporal databases , see Figure 3.4, take advantage of both the static rollback

database and the historical database by combining the valid time and the transaction time

into a four dimensional table, enabling the DBMS to view tuples valid at certain

moments as seen from some other moment. A complete history of retroactive and

postactive changes will be captured in a temporal database. A relation in a temporal

database can be thought of as an sequence of historical states of which contains a

complete historical relation. Therefore, temporal relations are append-only.

transaction
Lime

(Reprinted from [Ref. 3])
Figure 3.4 A Temporal Relation

35

S

, -~ I

IV. TEMPORAL DATA LANGUAGE

A. WHY DO WE NEED LANGUAGES?

An essential component of a database system is the user-interface. This component

is the primary means for a user to control the information, going and coming into the

database. The construct is the data language or data manipulation language. According

to [Ref. 241 , the data language allows the user to write queries and transactions which

consist of generic operations on the database. Another definition is a language that

enables users to access or manipulate data as organized by the appropriate data

model [Ref. 19]. Typicat operations of data languages are retrieval, insertion and

deletion of data.

B. A TAXONOMY OF TEMPORAL DATA LANGUAGES

The development of a temporal query language is closely related to the data model.

In chapter Im, two possible approaches to temporal data models are discussed. By

extending the semantics of the relational data model to include time is the first method.

Adding temporal attributes to a conventional data model is the second method. The first

approach uses temporal logic as the basis for the data language. Many in the research

community have developed temporal logic to deal with the time element. A survey of

the research is discussed below. In the second approach, the data model is not aware of

the time element at all, rather the query language does the work. The language serves as

the interface between the time element and the data model. The language translates

operations involving time in a form understandable to the relation. These languages have

a formal semantic to make understandable the meaning of each construct. The languages

are based on relational algebra and relational calculus, which are powerful and flexible.

36

A

They provide the capability to prove correctness of operation. Therefore, the taxonomy

of the data languages is based on temporal logic and the constructs of relational algebra

and relational calculus. Logic developed for the temporal support of data language are

introduced with specific references cited where a detailed description is found.

1. Temporal Logic Language XYZ

The XYZ language proposed by Tang implements a limited set of temporal

logic. Recall that a state refers to a single instance of the world as reflected in the

database. Time is perceived to be a sequence of ordered states. Temporal logic is used to

determine operations across state boundaries. Temporal logic, through the use of

precedence relationship, establishes rules and use of operators to access states. A more

detailed discussion of the Temporal Logic Language XYZ is found in [Ref. 251. Three

temporal operations are described below according to Tang.

1. next time This operator enables us to express something that must necessarily be
true in the next state of the system. It also enables us to address the contents of pro-
gram variables in the next state of the system.

2. eventually This operator is different from the next time operator, in that the truth
it expresses must not necessarily be true in the next state, although it must become
true sometimes in the future. By definition, "sometimes in the future" includes now.

3. necessary The necessity operator is used to state something that must necessarily
be true in all system states from now on. We will use it to express invariants. By
definition, "from now on" includes now.

2. Modal Temporal Logic

Modal temporal logic is concerned with the multiple states of a time-embedded

database system. A fact that is true in one state may not be true in other states.

Inferences can also be drawn between the possible states. Additionally, a proposition in a

state may depend on other possible states. Modal temporal logic is the idea used to

consider the various possibilities among states. Temporal logic is based on a

37

mathematical foundation. This foundation proves useful in formal correctness proof of

modal operators in the language. In [Ref. 26] the use of the relations earlier-than and

later-than represent the relationship of possible states.

A modal temporal structure is described, which consists of a set of states. Each

state contains a set of proposition that are true and related by an immediate predecessor-

successor relation. Then a branch of time is defined as the possible sequence of states for

a relation. A unified branching temporal logic is used to project properties of future

states. A more detailed discussion, to include syntax, semantic and axiom is found

in [Ref. 261. Although the language is based in the context of a natural language

question-answering, it demonstrates the modal temporal logic in sufficient detail.

Another formal presentation of modal temporal logic is found in [Ref. 27].

3. An Interval Logic

A pervasive concept in temporal reasoning is that of a property being true for

an interval. This forms the basis for an interval logic to represent temporal relationships.

The use of formulas, defined in the interval logic, derives certain properties of intervals.

These properties in conjunction with temporal operators compose new intervals. The

development of an interval logic is closely associated with concurrent research in the

area of distributed systems, concurrent programs and communications protocol.

Therefore, the specification and verification methods are based on the concept of

intervals. A formal presentation of an interval logic is found in [Ref. 28].

4. Intensimial Logic

Intensional logic is a formal presentation to represent the semantics in time-

embedded database systems. Intensional logic is analogous to the formalism of first-

order logic for relational database model, likewise, intensional logic is a formalism for

understanding semantic in the temporally oriented data model. Intensional logic is based

on the work of Montague. The basic idea behind intensional logic is that time-varying

38

attributes are represented as functions from a set of times into values. Intensional logic is

a typed, higher order lambda calculus. Every expression in intensional logic has an

associated type to determine the kind of object in the language, which can be assigned an

interpretation function. Intensional logic is higher order in the sense it allows

quantification over variables of every type. Intensional logic is covered in depth

in [Ref. 22].

5. Relational Algebra

The use of relational algebra to support the relational data model is well

known. Relational algebra is a procedural query language consisting of five basic

operations: select, project, cartesian-product, union and set-difference. A relational

query expression is satisfy by generating a sequence of operations that answer the query.

Extending the relational algebra to include temporal support is founded on several basis.

Relational algebra has been rigorously tested and provides a firm foundation upon which

to build on. Optimization techniques for the relational algebra is already developed. The

use of the extended relational algebra meant additional operators for the temporal domain

and new commands that modify the database. Furthermore, new rules and identities are

prescribed. In [Ref. 29] new algebraic operators are identified in support of the proposal

to use attribute versioning. Time-stamping attributes imply non-first normal form

relations, from which the relational algebra is extended. In [Ref. 30] extending the

algebra to support transaction time, valid time and user-defined time is the underlying

concept.

6. Relational Calculus

Relational calculus is a nonprocedural language. A formal description of what

information is needed without specifying the steps to retrieve the data is the basis of the

calculus. Of particular importance is the tuple relational calculus of which Temporal

Query Language (TQUEL) is based on. Relational tuple calculus is expressed in the

39

form of "there exist" or "for all" through the use of predicate calculus in mathematical

logic. QUEL is the query language for the INGRES relational database system. TQUEL

is a minimum extension of QUEL, syntactically and semantically, designed to support

temporal queries. Three design aspects of TQUEL are important. Any QUEL statements

are also valid TQUEL statements. An implication of the previous sentence is such

statements have identical semantics in QUEL and TQUEL, when the time domain is

fixed. Finally, the constructs of QUEL and TQUEL are direct analogue of each other.

Examples are provided to illustrate the temporal constructs of TUEL.

4

40

",1

The as of clause in TQUEL is used in a static rollback relation to specify the transaction

time, see Figure 4.1.

name rank transaction time
(start) I (end)

Merrie associate 08/25/77 12/15/82
Merrie full 12/15/82 00

Tom associate 12/07/82 0o

Mike assistant 01/10/83 02/25/84

range of f is faculty
retrieve (f.rank)
where f.name = "Merrie"
as of "12/10/82"

rank

Iassocia te

(Reprinted from [Ref. 3])
Figure 4.1 An Example of a Static Rollback Relation.

41

9WU, W WWV :U WMWM. * ,,._ W' XWVW WU

The when predicate and a valid clause consisting of start of, precede and overlap is used

in a historical relation to specify the valid time, see Figure 4.2.

name rank valid time
(from) (to)

Merrie associate 09/01/77 12/01/82
Merrie full 12/01/82 0

Tom associate 12/05/82 00

Mike assistant 01/01/83 03/01/84

range of fl is faculty
range of f2 is faculty
retrieve (fl.rank)
where fl.name = "Merrie"
and f2.name = "Tom"
when fI overlap start of f2

rank valid time
(from) (to)

full 12/01/82 00

(Reprinted from [Ref. 3])
Figure 4.2 An Example of a Historical Relation.

42

The combination of the constructs in a static rollback relation and a historical relation is

used in a temporal relation, see Figure 4.3. A complete presentation of TQUEL and a

comparison of TQUEL to other query language supporting time are in [Ref. 211.

name rank valid time transaction time
(from) (to) (start) (end)

Merrie associate 09/01/77 CO 08/25/77 12/15/82
Merrie associate 09/01/77 12/01/82 12/12/82 0*
Merrie full 12/01/82 CO 12/15/82 c0

Tom full 12/05/82 .0 12/01/82 12/07/82
Tom associate 12/05/82 00 12/07/82 00

Mike assistant 01/01/83 c0 01/10/83 02/25/84
Mike assistant 01/01/83 03/01/84 02/25/84 -0

range of fi1 is faculty
range of f2 is faculty
retrieve (fl.rank)
where fl .name = "Merrie"
and f2.name = "Tom"
when fl overlap start of f2
as of "12/10/82"

rank valid time transaction time
(from) (to) (start) (end)

associate 09/01/77 - 1 08/25/77 12/15/82

(Reprinted from [Ref. 3])
Figure 4.3 An Example of an Temporal Relation.

4

43

V. TEMPORAL DATABASE SYSTEMS

A. THE SYSTEM, MODEL AND LANGUAGE

In the previous chapters, two possible approaches of handling the time element in a

database system is introduced. A majority of the researchers have appended a time-

stamp at the attribute level or tuple level to incorporate time in the database. Time-

stamps are used as a representation for valid time and transaction time. This method

requires the data languages to transform queries involving time to a form understandable

to the underlying static relations. Examples of such systems are abundant and include

TRM [Ref. 311 , CSL [Ref. 321 , LEGOL 2.0 [Ref. 331 , TERM [Ref. 341 and

TQUEL [Ref. 21]. Alternatively, some researchers have chosen to extend the semantics

of the relational model to incorporate time. Extending the semantics of the data model is

facilitated through the development of various temporal logic. The logic becomes an

integral part of the data model from which the data language is based upon. Examples of

such systems are DMTLT [Ref. 271 and IL, [Ref. 22].

B. A TAXONOMY OF TEMPORAL DATABASE SYSTEMS

From the above discussion a taxonomy of database systems can be derived. The

taxonomy is based on the approach taken to extend the relational model to incorporate

time. The taxonomy consists of the Time-Stamp Based Database System and the

Temporal Logic Based Database System.

1. Time-stamp Based Database System

* The Time-Stamp Based Database System is the term defined for databases that

append a time-stamp at the attribute level or taple level. The data language for these

systems are based on relational calculus or relational algebra, which acts as an

44

NWIIII'"I M)M

interpretation mechanism. It has the advantage of simplicity. The relational data model

is relatively simple to learn and understand. The relational calculus and relational

algebra has been formalized and thoroughly studied. From an implementation point of

view, adding time-related features to the relational model is the easier approach. Time-

stamp based database system can support valid time, transaction time or both.

2. Temporal Logic Based Database System

The Temporal Logic Based Database System is the term defined for database

systems to extend the semantics of the relational model to include time. It can be thought

of as an approach to develop the logic required for time within the database system. The

internal functions of the database system is fully aware of the time element. This

approach is more complex. The logic developed is new and less rigorous than those of

relational calculus or relational algebra. However, a advantage is the efficiency and

better performance achieved through a temporal logic specifically designed for a

database system. It is not an "on top" approach but a "within" approach.

45

VI. CONCLUDING REMARKS

A broad overview of present technology related to handling time in database

systems is presented. Basic concepts and fundamental principles associated with

temporal data, temporal data models, temporal data languages and temporal database

systems are presented. A taxonomy is defined for the data models, data languages and

database systems to provide a summarization of the work to date. The compilation of the

various works in this paper serves as an index into the various topics of interest in the

temporal domain of database systems. The references cited provides a source of

additional information related to time in database systems.

Most of the research to date have concentrated on the relational data model, because

of its simplicity. Other data models as well can incorporate the time element. The

knowledge and experience gained with the relational model should help. Presently, there

is no commercial application of time-embedded database systems. They have been

restricted to prototype implementation. However, many applications have identified a

need for temporal support. This and the increasing improvements in storage technology

will make temporal database systems feasible. However, more research is needed to fill

this void.

After reviewing the present technology of temporal database systems, no mention

was made of real-time temporal database systems. It is the opinion of the author that

real-time temporal database systems provide a brand new area of research opportunity.

Real-time systems are time constrained. One immediate question is the present

technology of temporal database systems adaptable in the real-time environment. With

real-time constraints many issues dealing with temporal database systems need to be

46

rIUPTWM (~xflM rugr. K KmXMN~N N IAN W M -W - U%_kPA lR. T11 '.AnPNnlrU uWR I ,- %NMWIWII VW~W VWU TUW,%.W1J

rehashed. It is the goal of this paper to provoke new thought in the area of real-time

temporal database systems. Further research can be conducted in many various areas

such as access methods, query optimization, concunrency control, temporal constraints

and database restructuring. Many implications of real-time constraints need to be

considered.

Ii 47

VII. ANNOTATED REFERENCES

Abbod, T., Brown, K., Noble, H., Providing Time-Related Constraints For
Conventional Database Systems, Proceedings of the 13th Very Large Data Base, pp.
167-175, 1987.

A tuple based historical database is presented. The model supports both physical
and logical time. To represent a period of time, version numbers that reflect the ordinal
position of the tuple is used instead of double logical time-stamps. The reason for this is
because the second logical time-stamp is not available at creation time when used in
conjunction with write-once laser disc. The distinction between version and correction
update is made. The notion of set-valued attributes much similar to time sequence of
Segev and Rotem is introduced. Rules for the user-defined integrity constraints for
correction-updates are defined in support of the model. A temporal front-end to Ingres
called SIS-BASE is described.

Adiba, M., Quang, N. and Oliveira, J., Time Concept In Generalized Databases,
ACM, pp. 214-223, 1985.

The paper is devoted to implementing temporal aspects into the Tigre model, which
is an extension of the entity-relationship model. The extension consist of abstract data
type concepts to handled generalized document or multimedia document.

Ahn, I., Towards An Implementation of Database Management Systems with
Temporal Support, Proceeding of the International Conference on Data
Engineering, pp. 374-381, February 1986.

The paper focuses on two aspects of temporal support. First, it distinguishes
between two schema structures, tuple versioning and attribute versioning, used in time-
embedded database systems. Second, variations of a two-level storage structure used to
stored temporal data are presented.

Ahn, I. and Snodgrass, R., Performance Evaluation of a Temporal Database
Management System, Proceedings of ACM SIGMOD 86 International Conference
on Management of Data, v. 15, pp. 96-107, June 1986.

This paper follows the work done on taxonomy by Snodgrass. A prototype temporal
database was built by extending Ingres and utilizing TQUEL. A benchmark was run with
the four types of database and two load factors. The results were analyzed to determine

48

|*

the factors with greatest impact. This is the first paper published, concerning the
performance evaluation of temporal database systems.

Allen, J. F., Maintaining Knowledge about Temporal Intervals, Communications of
the ACM, v. 26, pp. 832-843. November 1983.

This paper introduces an interval-based temporal logic that is both expressive and
computationally effective. Representing the interval can be done by the user input data
or the relationship is deduced. A balance is reached by the introduction of reference
intervals, which can control the amount of propagation through the system. The notion
of time point versus tine intervals is presented.

Ariav, G., A Temporally Oriented Data Model, ACM Transaction on Database
Systems, v. 11, pp. 499-527, December 1986.

A complete presentation of Temporally Oriented Data Model (TODM) and
Temporally Oriented SQL (TOSQL), which is TODM-based specified syntax is
introduced. TODM is based on a three dimensional construct of time, object and
attribute, much like the HDB of Ahn. A historical development of temporal data is
surveyed. A guideline for temporal data model is then critically compared to TODM
based on the guidelines presented.

Ariav, G. and Clifford, J., New Directions For Database Systems, Ablex Publishing
Corporation, Chap. 12, pp. 168-185, 1986.

Chapter 12 of the book provides a broad overview of temporal data management.
Easy to read and understand, the novice reader can use this as an introduction into the
topic. The theory behind time-embedded database are examined. A survey of
implemented time-embedded database is used to guide the reader. Applications and new
issues of time models and systems are presented.

Ariav, G., Clifford, J., Jarke, M., Panel on Time and Databases, Proceedings of
ACM SIGMOD International Conference on Management of Data, v. 13, pp. 243-
245, May 1983.

The panel discusses and categorizes time-embedded databases into four areas: time
and database theory, the implementation of historical database systems, the user interface
to historical database, and application of historical database. Research of time in
databases follow two trends. The first records history data as it changes over time. The
second maintains a transition from database state to the next.

4
49

0!_

N . x%%. " i '

Ariav, G. and Morgan, H., MDM: Handling The Time Dimension in Generalized
DBMS, Department of Decision Sciences, The Wharton School, University of
Pennsylvania, pp. 1-34, May 1981.

The Dynamic Alerting Transaction Analysis (DATA) model system is presented.
Originally conceived, designed and implemented, the authors discuss the development
and lessons learned from DATA. The DATA system is a relational model and can be
classified as a static rollback database. The DDL and DML are fully described.

Ben-Zvi, J., The Time Relational Model, PH.D. Thesis, Department of Computer
Science, University of California at Los Angeles, 1987.

The Time Relational Model is an extension of the relational model with temporal
data viewed as a three-dimensional structure.

Bolour, A., Anderson, T., Dekeyser, L., and Wong, H. K. T., The Role of Time in
Information Processing: A Survey, ACM SIGMOD RECORD, v. 12, pp. 28-42,
Spring 1982.

This survey is mainly concerned with the role of time in the area of artificial
intelligence, logic and linguistic. It contains roughly 70 pre-1982 bibliographies and
about half are reviewed in depth. The bibliographies are in chronological order dating
from the 1960's.

Breutmann, B., Falkenberg, E., Mauer, R., CSL: A language for Defining
Conceptual Schemas, Data Base Architect, North-Holland Publishing Company, pp.
237-256, 1979.

CSL is a high level data definition language used for defining conceptual schemas.
Conceptual Schemas define the univerpe of discourse for a database. A time handling
facility is introduced which requires an extension of CSL constructs.

Castilho, J., Casanova, M., Furtado, A., A Temporal Framework For Database
Specification, Proceeding of the Eighth International Conference on Very Large
Data Bases, pp. 280-291, September 1982.

The paper addresses static constraints and transition constraints. Static constraints
determine what data is to to be stored. Transition constraints determine how the data can
be updated. A multi-level database specification methodology is proposed. The levels
determine the specificity of update operations. The first level uses a variant of Temporal

50

S

Logic that assumes a database does not have any built-in update operations. The second
level contains predefined update operations for any update. These levels are expressed
through the use of temporal language.

Clifford, J. and Tansel, A., On An Algebra For Historical Relational Databases:
Two Views, ACM SIGMOD International Conference on Management of Data, v.
14, pp. 247-265, December 1985.

Two independent works by the respective authors were combined and submitted to
the conference. The papers are concern with the semantics involved to support temporal
requirement. This leads to two issues that must be addressed. Extending the relational
algebra and the use of attribute versioning. Part I by Clifford is an extension of previous
work in the area of extended relational database model. Clifford discusses the semantic
issues involved when the time element is added. Examples are given to demonstrate the
subtle issues caused by time. Part H by Tansel is a formal presentation of the extended
relational algebra, that answers some of the issues raised by Clifford. Highlights of the
algebra are the use of time-stamped attributes and non-first-normal-form relations.

Clifford, J. and Warren, D., Formal Semantics for Time in Databases, ACM
Transactions on Database Systems, v. 8, pp. 214-257, June 1983.

This paper deals with incorporating the semantic of time in a historical database.
The use of formal logic can contribute to the semantics of the database. In this vain, a
form of intensional logic formulated by Richard Montague is introduced as a formalism
for understanding temporal semantics. It can be compared to formalism of first order
logic for relational database model.

Copeland, G. and Maier, D., Making Smalltalk a Database System, Proceedings of
ACM SIGMOD International Conference on Management of Data, v. 14, pp. 316-
325, June 1984.

0 Servio Logic Corporation is developing a computer system to support a set-theoretic
data model (STDM) in an object-oriented programming environment. Smalltalk, an
object-oriented language, is used to address the issues. One of which is to include the
temporal domain. The GemStone data model is a similar approach.

Dadam, P., Lum, V., Werner, H., Integration of Time Versions into a Relational
Database System, Proceeding of the Tenth International Conference on Very Large
Data Bases, pp. 509-522, August 1984.

M5

This paper analyzes design issues associated with implementing time version
support into a relational model. Some of the issues raised were physical or object
versioning, selection of time-stamps, storage requirements, recovery, concurrency control
and temporal anomalies. One of the solutions is to integrate time version support into the
database system instead of an 'on top' approach, where the database does not know of
any support for the temporal domain. Several versioning strategies are presented and
narrowed down to one possible implementation.

Ferg, S., Modelling The Time Dimension In An Entity-Relationship Diagram, The
4th International Conference on Entity-Relationship Approach, pp. 280-286,
October 1985.

A technique for representing time in the entity-relationship model was developed in
1984, for the Federal Reserve Board to gather and calculate banking statistics. The
model uses states and events, which are time-stamped relationships between entities.
Events have a time duration, whereas states do not. Attribute changes were model as a
relationship between an entity and a domain. The use of Relationship, Attribute, Keys
and Entity, (RAKE) was a formalism to represent the model.

Findler, N., Chen, D., On The Problem Of Time, Retrieval Of Temporal Relations,
Causality, And Co-Existence, Second International Joint Conference on Artificial
Intelligence, pp. 531-545, September 1971.

The paper discusses the issue of temporal events within a question-answering
program. The system should be able to deduct inconsistencies, causal relationships and
co-existence.

Gadia, S., Toward A Multihomogeneous Model For A Temporal Database,
Proceedings of the International Conference on Data Engineering, pp. 390-397,
February 1986.

This paper is an extension of his earlier work on homogeneous model. Essentially
going from tuple versioning to attribute versioning. The model is based on temporal
element, temporal assignment and temporal expression. An essential element of the
model is to minimize the distinction between a logical unit of data and its physical
representation. Thus the snapshots are in first normal form and the building blocks for
the model. Related works are compared to the model.

52

Gadia, S. and Vaishnav, A Query Language For A Homogeneous Temporal
Database, Proceedings of the ACM Symposium on Principles of Database Systems,
pp. 51-56, February 1986.

The Homogeneous Temporal Query Language (HTQUEL) is presented for the
homogeneous temporal database. Homogeneous is used in the above term because the
temporal domain does not vary from one attribute to another. This notion has been
modified to allow each attribute to contain temporal information, in other words, attribute
versioning. Examples are used to demonstrate the language. Time units in this model
are considered discrete. Two data types are employed: temporal relations and temporal
element.

Johnson, R. and Lorentzos, N., Temporal data management, Information Update
pp. 5-11, September 1987.

This paper is an abstract of their technical report and proposes an extension to
relational algebra in support of temporal data. A series of examples are implemented in
Ingres. A solution to the problem of functional dependencies are given. The
characteristic of other models and their approaches are included.

Jones, S. and Mason, P. J., Handling The Time Dimension In A Data Base,
Proceedings of the International Conference on Databases, pp. 65-83, July 1980.

The LEGOL 2.0 data model is a relational specification language designed to handle
the time dimension. Illustrations and examples are provided to demonstrate the
capabilities of the model. There are two attributes defined with every tuple (start,end).
These attributes are user-defined and therefore do not represent the time element
uniquely in the database.

Jones, S., Mason, P., Stamper, R., Legol 2.0: A Relational Specification Language
For Complex Rules, Information Systems, v. 4, pp. 293-305, 1979.

The Legol language is design for writing rules with explicit time handling
capabilities. The paper describes the language.

Klopprogge, M., Term: An Approach to Include the Time Dimension in the Entity-
Relationship Model, Entity-Relationship Approach to Information Modeling and
Analysis, North Holland, P.P. Chen (ed), pp. 473-509, 1983.

53

A thorough discussion of extending the entity-relationship model to include the
temporal domain is investigated. An emphasis is placed on the handling of incomplete or
correction of erroneous data in the schema. The model developed Thne-extended entity
relationship model (Term), include data definition and data manipulation. The language
is based on PASCAL.

Kung, C., On Verification of Database Temporal Constraints, Proceedings of
ACM-SIGMOD 1985 International Conference on Management of Data, v. 14, pp.
169-179, December 1985.

A temporal framework for database specification and verification are presented.
The specifications are: static constraints, temporal constraints and operation descriptions.
The method is developed to check consistency, to ensure the operations are permissible
and the sequence of operation are within the temporal constraints.

Lum, V., Dadam, R., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H.,
Woodfill, J., Design Of An Integrated DBMS To Support Advanced Application,
Proceeding of the Conference on Foundation Of Data Organization, pp. 31-49, May
1985.

This paper identifies three new requirements for databases: support for both
normalized and non-normalized models directly at the system interface level, support for
text processing and support for the temporal domain. It is argued that building these
functions on top of existing DBMS are inefficient. A better way is to design a system to
satisfy the new requirements. A description of the DBMS to satisfy the requirements are
presented. Other issues of the design are discussed.

Lum, V., Dadam, R., Erbe, R., Guenauer, J., Pistor, P., Walch, G., Werner, H., and
Woodfill, J., Designing DBMS Support for the Temporal Dimension, Proceedings of
ACM SIGMOD International Conference on Management of Data, pp. 115-130,
June 1984.

This paper indicates the difficulties associated with implementing temporal aspect
on top of existing database systems. It proposes an integrated approach to directly
support the time element. The implementation chosen for temporal data constructs is the
chaining of tuples in reverse time order. Other issues such as indexing, storage
efficiency, and access methods are presented.

54

a U. r

Martin, N., Navathe, S. and Ahmed, R., Dealing with Temporal Schema Anomalies
in History Database, Proceeding of the 13th Very Large Data Bases Conference, pp.
177-184, 1987.

This paper describes the problem of temporal anomalies, when temporal schemas
and non-temporal schemas coexist in the same environment. Some of the causes of
temporal anomalies are identified. The introduction of Temporal Relational Model
(TRM) allows both time varying relations and non-time varying relations to be in the
same database. Schema Temporal Logic (STL), through the use of modal temporal logic
is a suggested solution. Modal logic, partitions the relations and defines a clear
interaction between them.

Mays, E., A Temporal Logic for Reasoning About Changing Data Bases in the
Context of Natural Language Questions-Answering, Expert Database Systems
Proceedings From the First International Workshop, pp. 559-578, 1986.

A modal temporal logic is presented in relation to changes in the database affecting
the natural language question-answering system. It should be able to handle a case like
this:
U Is New York less than 50 miles from Philadelphia?
S No, shall I let you know when it is?
The temporal logic is defined and demonstrated.

McKenzie, E., Bibliography: Temporal Databases, ACM SIGMOD RECORD, v. 15,
pp. 40-52, December 1986.

This article is a comprehensive survey of over 80 bibliographies from 1982-1986,
categorized according to the taxonomy developed by Snodgrass and Ahn, by four topics:
rollback database, historical database, temporal database, and other time-related research.
This work follows that of Bolour.

McKenzie, E. and Snodgrass, R., Extending the Relational Algebra to Support
Transaction Time, Proceedings of Association for Computing Machinery Special
Interest Group On Management of Data, pp. 467-478, May 1987.

The paper is an extension of previous work. Conventional relational algebra is
extended to support valid time, yielding a temporal algebraic language. One of the
benefits permit the mapping from the algebraic operations to update operations can be
proven correct. Denotational semantics is used to define the language. The language is
then described fully, to include the syntax, the semantic domain and the semantic
function.

55

-'S

Rotem, D. and Segev, A., Physical Organization of Temporal Data, Proceedings
Third International Conference on Data Engineering, pp. 547-553, February 1987.

A multidimensional partitioning of the file in a time-embedded database is
proposed. Two algorithms, symmetric and asymmetric, are presented. Experimental
results show the algorithms are better than grid-type partitioning.

Schwartz, R., Melliar-Smith, P., Vogt, F., An Interval Logic for Higher-Level
Temporal Reasoning, Proceedings of the Second Annual Symposium on Principles
of Distributed Computing, pp. 173-185, August 1983.

An interval logic is introduced to represent temporal relationships. The
specification and verification methods are based on the interval concept. The language
and the logic is presented with examples and illustrations.

Segev, A. and Shoshani, A., Logical Modeling of Temporal Data, Proceedings of
Association for Computing Machinery Special Interest Group on Management of
Data, pp. 454-466, May 1987.

This paper is an extension of previous works and concentrates on precise
specification of time sequences.

Sernadas, A., Temporal Aspects Of Logical Procedure Definition, Information
Systems, v. 5, pp. 167-187, 1980.

The paper is concern with adding the time element in a message-oriented relational
model to achieve memory independence. Memory independence is recalling the past
without the current system being involve in representing the information. The analysis
indicates the use of temporal databases to achieve memory independence. A special
modal tense logic is describe to facilitate the use of temporal database.

Shoshani, A. and Kawagoe, K., Temporal Data Management, Proceeding of the
Twelfth International Conference on Very Large Data Bases, pp. 79-88, August
1986.

The concept of time sequence and time sequence array are introduced. Properties
and operations of time sequence are discussed. Design issues, such as access patterns
that affect the physical organization are presented.

56"
56a

Snodgrass, R., The Temporal Query Language TQUEL, ACM Transactions on
Database System, v. 12, pp. 247-298, June 1987.

TQUEL is designed to be a minimum extension to QUEL, both semantically and
syntactically. The article covers the syntax and semantics of TQUEL. A comparison of
TUQEL to other query languages supporting the time element is included. The criteria
for the comparison are defined and explained. A tuple relational calculus semantic for
TQUEL is provided.

Snodgrass, R., Research Concerning Time in Database Project Summaries, ACM
SIGMOD RECORD, v. 15, pp. 19-39, December 1986.

This paper is an attempt to determine the current research areas of time in databases.
A letter was sent in July of 1986 to 38 researchers active in time related database
research. The results are a compilation of 22 responses. Addresses, mailbox address and
telephone numbers are provided though not verified. The article provides a source of
current active researchers in temporal database and their interest.

Snodgrass, R. and Ahn, I., A Taxonomy of Time, Proceedings of the International
Conference on Management of Data, ACM SIGMOD, v. 14, pp. 236-246, December
1985.

The paper defines three types of time: transaction time, valid time, user-defined time
and four types of databases: static database, static rollback database, historical database,
temporal database. An example is presented for each type of database. Included is a
survey of various time models.

Svobodova, L., A Reliable Object-Oriented Data Repository For A Distributed
Computer System, Proceeding of 8th Symposium on Operating System Principles,
pp. 47-58, December 1981.

The repository is part of a distributed data storage system and contains a stable
append-only storage called Version Storage (VS). The repository provides large reliable
long term storage of history objects. New techniques for data storage and organization
are presented.

Tansel, A., Adding Time Dimension To Relational Model And Extending Relational
Algebra, Information System, v. 11, pp. 343-355, 1986.

57

It

Extending the relational model and relational algebra to support new time oriented
operations are presented. The model is the first to specifically propose adding time at the
attribute level versus tuple level. The use of relational algebra is used extensively. New
research in the area of graphical query language and prototype implementation in support
of the time domain are envisioned.

Urban, S. and Delcambre, L., An Analysis of the Structural, Dynamic And
Temporal Aspects of Semantic Data Model, IEEE, pp. 383-389, 1986.

This paper addresses the structural, dynamic and temporal aspect of object-oriented
semantic model. Work with temporal features are almost nonexistent and plenty of
research is readily available in this area.

58

S

- K

LIST OF REFERENCES

1. Bolour, A., Anderson, T. L., Dekeyser, L. J., and Wong, H. K. T., "The Role of
Time in Infonnation Processing: A Survey," ACM SIGMOD RECORD, v. 12,
pp. 28-42, Spring 1982.

2. McKenzie, E., "Bibliography: Temporal Databases," ACM SIGMOD RECORD,
v. 15, pp. 40-52, December 1986.

3. Snodgrass, R. and Aim, I., "A Taxonomy of Time," Proceedings of the
International Conference on Management of Data, ACM SIGMOD, v. 14,
pp. 236-246, December 1985.

4. Ahn, I., "Towards An Implementation of Database Management Systems with
Temporal Support," Proceeding of the International Conference on Data
Engineering, pp. 374-381, February 1986.

5. Fujitani, L., "Laser Optical Disk: The Coming Revolution in On-line Storage,"
Communication ACM, v. 27, pp. 546-554, June 1984.

6. Hoagland, A., "Information Storage Technology: A Look at the Future," IEEE
Computers, v. 18, pp. 60-67, July 1985.

7. Kenville, R. F., "Optical Disk Data Storage," -Computer, v. 15, pp. 21-26, July
1982.

8. Rothchild, E., Optical-Memory Media, v. 8, pp. 86-106.

9. Chi, C. S., "Advances in Computer Mass Storage Technology," Computer, v. 15,
pp. 60-74, May 1982.

10. Feudo, C. V., Modern Hardware Technologies and Software Techniques for
Online Database Storage and Access, M.S. Thesis, Naval Postgraduate School,
Monterey, California, December 1985.

11. Johnson, R. and Loretzos, W., "Temporal Data Management," Information
Update Database Technology, pp. 5-11, September 1987.

12. Ariav, G. and Clifford, J., New Directions For Database Systems, pp. 168-185,
Ablex Publishing Corporation, 1986.

13. Ferguson, M., Modern Database-System Design for the Tomahawk Common
Weapon Control System (CWCS), M.S. Thesis, Naval Postgraduate School,
Monterey, Califomia, December 1984.

14. Allen, J. F., "Maintaining Knowledge about Temporal Intervals,"
Communications of the ACM, v. 26, pp. 832-843, November 1983.

15. Segev, A. and Shoshani, A., "Logical Modeling of Temporal Data," Proceedings
of Association for Computing Machinery Special Interest Group on Management
of Data, pp. 454-466, May 1987.

16. Shoshani, A. and Kawagoe, K., "Temporal Data Management," Proceeding of the
12th International Conference on Very Large Database, pp. 79-88, August 1986.

59

P,

17. Rotem, D. and Segev, A., "Physical Organization of Temporal Data," Third
International Conference on Data Engineering, pp. 547-553, February 1987.

18. Lum, V., Dadam, R., Erbe, R., Gruenauer, J., Pistor, P., Walch, G., Wemer, H.,
and Woodfill, J., "Designing Database Management System Support for the
Temporal Dimension," Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 115-130, 1986.

19. Korth, H. and Silberschatz, A., Database Systems Concepts, McGraw-Hill, 1986.

20. Wiederhold, G., Database Design, McGraw-Hill, 1977.

21. Snodgrass, R., "The Temporal Query Language Tquel," ACM Transactions on
Database Systems, v. 12, pp. 247-298, June 1987.

22. Clifford, G. and Warren, D., "Formal Semantics for Time in Databases," ACM
Transaction on Database Systems, v. 8, pp. 214-257, June 1983.

23. Martin, N., Navathe, S., and Ahmed, R., "Dealing with Temporal Schema
Anomalies in History Database," Proceeding of the 13th Very Large Data Bases
Conference, pp. 177-184, 1987.

24. Hsiao, D., Modern Database System Architecture, (unpublished), Naval
Postgraduate School, Monterey, California 93943.

25. Tang, C., "A Temporal Logic Language to represent Data, Knowledge, Algorithm
and Specification in a Uniform Framework," The International Pre-VLDB' 86
Symposium, pp. 278-291, August 1986.

26. Mays, E. , "A Temporal Logic for Reasoning About Changing Data Bases in the
Context of Natural Language Questions-Answering," Expert Database Systems
Proceedings From the First International Workshop, pp. 559-578, 1986.

27. Sernadas, A., Temporal Aspects Of Logical Procedure Definition, Information
Systems, v. 5, pp. 167-187, 1980.

28. Schwartz, R., Melliar-Smith, P., and Vogt, F., "An Interval Logic for Higher Level
Temporal Reasoning," Proceedings of the Second Annual Symposium on
Principles of Distributed Computing, pp. 173-185, August 1983.

29. Tansel, A., Adding Time Dimension To Relational Model And Extending
Relational Algebra , v. 11, pp. 343-355, 1986.

30. McKenzie, E. and Snodgrass, R., "Extending the Relational Algebra to Support
Transaction Time," Proceedings of Association for Computing Machinery Special
Interest Group On Management of Data, pp. 467-478, May 1987.

31. Ben-Zvi, J., Department of Computer Science, Ph.D. Dissertation, University of
California at Los Angeles, 1987.

32. Breutmann, B., Falkenberg, E., and Mauer, R., CSL: A language for Defining
Conceptual Schemas, Data Base Architect, North-Holland Publishing Company,
1979.

33. Jones, S. and Mason, P., "Handling The Time Dimension In A Data Base,"
Proceedings of the International Conference on Databases, pp. 65-83, July 1980.

60

.. ' -F

34. Klopprogge, M., "Term: An Approach to Include the Time Dimension in the
Entity-Relationship Model," Entity-Relationship Approach to Information
Modeling and Analysis, pp. 473-509, North Holland, 1983

61

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Chief of Naval Operations
Director, Information Systems (OP-945)
Navy Department
Washington, D.C. 20350-2000

4. Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001

5. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

6. Curriculum Officer, Code 37
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor David K. Hsiao, Code 52Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

8. Professor Thomas C. Wu, Code 52Wq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

62

9. Donald D. Hom 2
505 Norwood Street
East Orange, New Jersey 07018

63

V. N

